Simple, comparative energy analyses of conceptual design forms are useful ways to utilize an energy model at this stage. Sample scenarios include varying the area of east-facing windows and looking at 35% versus 55% glazing. Each scenario can be ranked by absolute energy use to make informed decisions during the design stage.
Explore and analyze design alternatives for energy use analyses to compare the cost-effectiveness of your design choices. For example, do you get better overall performance from a better window or from adding a PV panel? Will demand-control ventilation outperform increased ceiling insulation?
Don't forget that LEED (following ASHRAE) uses energy cost and not straight energy when it compares your design to a base case. That's important because you might choose to use a system that burns natural gas instead of electricity and come out with a lower cost, even though the on-site energy usage in kBtus or kWhs is higher. Generally you have to specify the same fuel in your design case and in the base case, however, so you can't simply switch fuels to show a cost savings .
Identify critical areas in which to reduce loads. For example, in a data center, the plug loads are the largest energy load. Small changes in lighting density might bring down the energy use but represent only a small fraction of annual energy use.
Ask the modeling consultant to develop an annual energy-use breakdown—in order to pick the “fattest” targets for energy reduction. A typical energy-use breakdown required for LEED submission and ASHRAE protocol includes:
lighting;
space heating;
space cooling;
domestic hot water;
additional installed heat recovery, refrigeration, or heat-rejection systems;
Plan on initiating energy modeling during the design process, and use it to inform your design—preferably executing several iterations of the design as you improve the modeled energy performance.
Design team members, including the architect and mechanical engineer at a minimum, need to work together to identify a percentage improvement goal for project energy use over the ASHRAE 90.1-2004-compliant baseline model. The percentage should be at least 14% (or 7% for existing buildings) to meet the prerequisite.
Contract an energy modeling team for the project. These services may be provided by the mechanical engineering firm on the design team or by an outside consultant. Software used for detailed energy use analysis and submitted for final LEED certification must be accepted by the regulatory authority with jurisdiction, and must comply with paragraph G2.2 of ASHRAE Standard 90.1-2004. Refer to Resources for a list of Department of Energy approved energy-analysis software that may be used for LEED projects.
Further develop energy optimization strategies with the design team. Look at reducing loads while creating a comfortable environment within the shell. Look at reducing east and west exposures, and at providing south windows with exterior shades to make a design feature out of passive techniques. Discuss highly efficient system design at this stage, before your design is finalized—for example: