For LEED documentation, the civil engineer needs to fill out the LEED Online credit form, including the pre-development rate and quantity of stormwater runoff, the post-development rate and quantity, and a stream-protection narrative (as applicable). The civil engineer should also provide a copy of the project plans with designated stormwater strategies. (See Documentation Toolkit for samples.)
The civil engineer provides final calculations for the stormwater design. Verify that volume and discharge flow rate reduction goals are met. Be sure that any items removed through value-engineering do not impact stormwater calculations.
Involve the whole project team in integrating stormwater strategies with the site design and structure. For example, calculate a cistern size appropriate for water
The civil engineer and landscape architect collaborate to design the stormwater systems to meet project goals, using the civil engineer's assessment of how much stormwater may be reduced through nonstructural means, such as increased landscape area or bioswales, and how much must be treated through engineered systems such as rainwater cisterns or green roofs.
Explore potential synergies and tradeoffs with other LEED credits or green building strategies. Items to discuss can include the use of parking lots versus parking garages for stormwater management, trees for shading hardscapes, and avoiding impervious surfaces (SSc7.1), trees for passive solar design (EAc1), plantings with native or
Research local regulations on stormwater reduction requirements, as well as regulations on the collection, storage, and reuse of rainwater. (See Resources for examples.)
The owner and civil engineer determine the feasibility and rough costs of appropriate stormwater management techniques. Identifying cost tradeoffs for complementary strategies is a crucial component of the decision process. For example, a rooftop runoff collection system may be more cost-effective when combined with a graywater collection and