While you could run the required energy model at the end of the design development phase, simply to demonstrate your prerequisite compliance, you don’t get the most value that way in terms of effort and expense. Instead, do it early in the design phase, and run several versions as you optimize your design. Running the model also gives you an opportunity to make improvements if your project finds itself below the required 10% savings threshold.
Projects using district energy systems have special requirements. For EAp2, the proposed building must achieve the 10% energy savings without counting the effects of the district generation system. To earn points in EAc1 you can take advantage of the district system’s efficiency, but you have to run the energy model again to claim those benefits (see EAc1 for details).
Model development should be carried out following the PRM from ASHRAE 90.1-2007, Appendix G, and the LEED 2009 Design and Construction Reference Guide, Table in EAc1 and CS Appendix 2: Energy Modeling Guidelines. In case of a conflict between ASHRAE and LEED guidelines, follow LEED.
Model development should be carried out following the PRM from ASHRAE 90.1-2007, Appendix G, and the LEED 2009 Design and Construction Reference Guide, Table in EAc1. In case of a conflict between ASHRAE and LEED guidelines, follow LEED.
If your project is using BIM software, the model can be plugged into the energy analysis software to provide quick, real-time results and support better decisions.
Simple, comparative energy analyses of conceptual design forms are useful ways to utilize an energy model at this stage. Sample scenarios include varying the area of east-facing windows and looking at 35% versus 55% glazing. Each scenario can be ranked by absolute energy use to make informed decisions during the design stage.
Explore and analyze design alternatives for energy use analyses to compare the cost-effectiveness of your design choices. For example, do you get better overall performance from a better window or from adding a PV panel? Will demand-control ventilation outperform increased ceiling insulation?
Don't forget that LEED (following ASHRAE) uses energy cost and not straight energy when it compares your design to a base case. That's important because you might choose to use a system that burns natural gas instead of electricity and come out with a lower cost, even though the on-site energy usage in kBtus or kWhs is higher. Generally you have to specify the same fuel in your design case and in the base case, however, so you can't simply switch fuels to show a cost savings
Identify critical areas in which to reduce loads. For example, in a data center, the plug loads are the largest energy load. Small changes in lighting density might bring down the energy use but represent only a small fraction of annual energy use.
Ask the modeling consultant to develop an annual energy-use breakdown—in order to pick the “fattest” targets for energy reduction. A typical energy-use breakdown required for LEED submission and ASHRAE protocol includes:
lighting;
space heating;
space cooling;
domestic hot water;
additional installed heat recovery, refrigeration, or heat-rejection systems;