Plan on initiating energy modeling during the design process, and use it to inform your design—preferably executing several iterations of the design as you improve the modeled energy performance.
Design team members, including the architect and mechanical engineer at a minimum, need to work together to identify a percentage improvement goal for project energy use over the ASHRAE 90.1-2007-compliant baseline model. The percentage should be at least 10% to meet the prerequisite.
Contract an energy modeling team for the project. These services may be provided by the mechanical engineering firm on the design team or by an outside consultant. Software used for detailed energy use analysis and submitted for final LEED certification must be accepted by the regulatory authority with jurisdiction, and must comply with paragraph G2.2 of ASHRAE Standard 90.1-2007. Refer to Resources for a list of Department of Energy approved energy-analysis software that may be used for LEED projects.
Trust your project’s energy modeling task to a mechanical firm with a proven track record in using models as design tools, and experience with your building type.
The relationship between first costs and operating costs can be complex. For example, more efficient windows will be more expensive, but could reduce the size and cost of mechanical equipment. A more efficient HVAC system may be more expensive, but will reduce operating costs.
Review case studies of similar energy-efficient buildings in the same climate to provide helpful hints for selecting energy-efficiency measures. For example, a building in a heating-dominated climate can often benefit from natural ventilation and free cooling during shoulder seasons. (See Resources for leading industry journals showcasing success stories around the country and internationally.)
More energy-efficient HVAC equipment can cost more relative to conventional equipment. However, by reducing heating and cooling loads through good passive design, the mechanical engineer can often reduce the size and cost of the system. Reduced system size can save money through:
smaller chillers or boilers;
smaller fans, used less frequently;
smaller pumps and auxiliary systems;
smaller ducts;
and less square footage devoted to mechanical systems.
Encourage your design team to brainstorm design innovations and energy-reduction strategies. This provides a communication link among team members so they can make informed decisions.