It’s helpful for the energy modeling report to include a simple payback analysis to assist the owner in making an informed decision on the operational savings of recommended features.
Use your energy model to review envelope thermal and hygrothermal performance. In a heating climate, thick insulation inside the air barrier may cause condensation problems. Consider an exterior thermal barrier to protect the air barrier and to prevent condensation inside the wall cavity. Identify thermal bridges in the walls and windows that could leak heat from inside. Add thermal breaks, such as neoprene gaskets, on shelf angles, silicone beading on window frames, and use other techniques to prevent leakage from the envelope.
One complete run of your energy model should be completed during design development to make sure the design is reducing annual energy cost by your targeted amount. This is the time when simplified models used to inform early design decisions should be replaced by a more comprehensive detailed model. Run two or three alternatives to help the designers finalize envelope and system selection. Common measures to consider include high-performance windows, additional roof insulation, and more efficient boilers.
Note that the guide demands additional time, attention, and integrated process from the design team as compared to conventional projects. It’s not just a list of prescriptive requirements, but a prescribed process for achieving energy efficiency goals. Plan to provide documentation of all steps outlined in Sections 1 and 2, including three conceptual design options and meeting minutes. The project manager, architect, and mechanical engineer should read the complete Core Performance Guide carefully to know beforehand the prescriptive requirements in Sections 1 and 2.
Confirm that your project team is comfortable with following all the prescribed requirements. If not, switch to Option 1: Whole Building Energy Simulation.
The architect, mechanical engineer, and lighting designer need to discuss each requirement and its design ramifications. Hold these meetings every six to eight weeks to discuss progress and make sure all requirements are being met.
Invite energy modelers to project meetings. An experienced modeler can often assist in decision-making during design meetings, even without running complete models each time.
While you could run the required energy model at the end of the design development phase, simply to demonstrate your prerequisite compliance, you don’t get the most value that way in terms of effort and expense. Instead, do it early in the design phase, and run several versions as you optimize your design. Running the model also gives you an opportunity to make improvements if your project finds itself below the required 14% savings threshold.