Date
Inquiry

Activated Carbon Filters for Low-Cost Demand Control Ventilation and Energy Efficiency This CIR proposes an innovation design credit for a suite of design features and a design procedure that will reduce the cost of demand controlled ventilation (DCV). The procedure is based on a combination of: scrubbing the air with activated charcoal (AC) filters to reduce the number of critical rooms in a building that will require CO2 sensors; using air-to-air heat recovery for the building air: using time-of--day control of ventilation for the building zones. The proposed design procedure will enable selecting the minimum number of CO2 sensors to control the amount of delivered outside air. This will reduce the initial cost as well as the annual cost of maintaining their calibration. The new Pacific Garden Mission building in Chicago will house an average of 800 homeless people on any given night. The design calls for using activated carbon filters in the main air handling unit for the entire building to help control the peculiarly strong body odors of the guests and to reduce the required outside air and associated energy use. Three "hot boxes" will also be used to disinfect by 180oF+ heat all the clothes of the incoming guests as part of the thorough laundry process. The activated carbon filters are capable of reducing these outdoor air rates by over 70%. This was determined by applying the Indoor Air Quality procedure described in Section 6.2 of ASHRAE Standard 62-1999 Ventilation for Acceptable Indoor Air Quality1 To be conservative, we will assume that only a 50% reduction in outside air will be feasible because additional outdoor air may be necessary to control body odors by dilution. Besides reducing the cost of conditioning the ventilation air an additional benefit of the activated carbon filters will be to help reduce the number of CO2 sensors needed in the building for effective and affordable demand control ventilation. By reducing the required outside air by 50% the number of "critical rooms" is reduced. We define "critical rooms" as the rooms having a required minimum fraction of outside air, say 0.50, as calculated using the Ventilation Rate Procedure for multiple spaces and the Indoor Air Quality Procedure in ASHRAE 62,2-20012. The rationale for not installing CO2 sensors in rooms with outdoor air fractions below a specific number, say 0.50, is: 1. if regularly occupied rooms with outdoor air fractions above 0.50 are getting sufficient outside air, the rooms with lower fractions should automatically get sufficient outside air. 2. one air handling unit serves the entire PGM building. Therefore, a small number of CO2 sensors can control the outdoor air fraction throughout the building. (The air handler is equipped with multiple fans--their redundancy makes it acceptable to serve a building this size, approx. 118,580sf net interior floor area with one air handler.) 3. The design will also include air-to-air heat recovery at the main air handling unit using either run-around-coils or heat pipes. 4. For major parts of the day CO2 sensor control of the supply and outside air quantities for particular space will be overridden by direct time-of-day control by the central EMS. The building program is arranged so that during the daytime the lower two floors will be occupied and conditioned for occupancy. The upper two floors are dormitories that will be unoccupied and their environment will be kept at unoccupied settings, including just enough supply air to slightly pressurize these floors relative to the outside. Conversely during the evening hours, the lower two floors will be unoccupied and their environment will be kept at unoccupied settings with the minimal required supply air to temper the space and control building pressurization. The central EMS will be used to control the supply air to these large blocks of the building. (This will also allow using a very low diversity factor to size the main air handling unit since it will be used to condition about 1/2 of the building at any one time.) 5. The limiting factor in determining the minimum acceptable amount of outside air may very well be the perception of odors by the occupants. This may require higher amounts of outside for dilution of odors than what would be called for by the CO2 sensor. This will be determined empirically after occupancy begins. In summary, the above design features and program requirements make it possible to reduce the number of CO2 sensors at this job by at least 50%. This will be documented in the summary table of the Ventilation Rate Procedure analysis. As such, the use of activated carbon filters makes demand controlled ventilation economically viable. Our first question is whether the above package of design features and approach is acceptable for reducing the number of required CO2 sensors and the cost of DCV and whether this would be considered an Innovation in Design and suitable for receiving a a LEED credit. Our second question is whether we can calculate the energy savings due to the activated carbon filters using the same analysis method approved for demand control ventilation. The % reduction due to the DCV would be calculated by subtracting saved energy from DCV in the numerator and using the Base Case energy cost without DCV in the denominator. Our preliminary energy modeling indicates annual savings of at least $10,000 per year or about 5% of the projected energy costs of the Current Design. These savings would be included under EA Credit 1 Optimize Energy Performance. We look forward to the USGBC\'s comments on this potential innovation in design and on the savings calculation method for the activated carbon filters. 1. ASHRAE 62.2-1999 Section 6.2 and Appendix E 2. ASHRAE 62.2-1999 Section 6.1.3.1 Ventilation Procedure for Multiple Spaces

Ruling

Based on the description provided, it does not appear that there are additional environmental benefits from this design approach that would qualify for an Innovation in Design credit, for the following reasons. LEED requires compliance with the Standard 62 using the Ventilation Rate Procedure (VRP). Reducing outdoor air rates is only allowed using the Standard\'s Indoor Air Quality Procedure. To comply with EQp1, outdoor air rates cannot be lower than those prescribed by the VRP, whether charcoal filters are used or not. Unfortunately the VRP tables do not have a category for "homeless centers." If they did, the rates would be quite high given the source strength. The closest occupancy in terms of body odor source strength is a "health club/weight room" which requires 20 cfm/p plus 0.06 cfm/ft2. In any case, the designers may have to request help from ASHRAE SSPC 62.1. Based on EQp1, the ASHRAE 62 Indoor Air Quality Procedure cannot be used to reduce ventilation rates. CO2 sensors should be used to monitor air quality; an alternative method for monitoring air quality has not been substituted outside of manual control in response to odors. EQc1 requires CO2 monitoring in densely occupied areas for air handlers serving multiple spaces with varying occupancy. As long as your design meets this requirement, then it will qualify for a point under EQc1. CO2 DCV must be customized to this application since the project requires a much higher ventilation rate compared to the activity level. The standard assumptions used in determining CO2 setpoints assume CO2 concentration tracks bio-effluent concentration and that bioeffluent/CO2 emission rate tracks activity level. This works for typical projects, but it would not be true for a homeless center. The project team may want to reconsider application of CO2/DCV for this project. Under EAc1, the ASHRAE 90.1 methodology calls for the same outdoor air rate for both the budget and proposed building. If DCV is used on this project, the energy savings can be demonstrated through the "exceptional calculation method" allowed by the standard. The energy cost savings would be included in EAc1. Strategies such as CO2 and humidity monitoring are addressed under existing credits within the LEED Rating System. Please note that another issue unrelated to Standard 62 is disease control. Homeless people are often carriers of disease (e.g. TB) and can be highly susceptible due to health conditions. In this case, the recirculation of any air in a homeless center may not be desirable. While very good particle filters (e.g. MERV 15) can remove most bacteria and droplet nuclei carrying viruses. 100% outdoor air with heat recovery may be a better solution. Applicable Internationally.

Internationally Applicable
On
Campus Applicable
Off
Credits