Ensure that specified HVAC systems and components match or exceed the efficiency requirements of the systems in the final, accepted energy model. Also, ensure that these systems, with their corresponding performance ratings, are included in the appropriate schedules and plans.
Ensure that your project is in compliance with all the prescriptive requirements outlined in the Advanced Buildings: Core Performance Guide, Sections 1.4, 2.9, and 3.10. Complete the prescriptive checklist, and collect equipment cut sheets.
Call out the efficiency ratings of selected equipment on mechanical equipment schedules to make sure that the proper model is selected and that the system is installed according to design intent.
Early in design development, engage the energy modeler in reviewing the recommendations for reaching the 15% and 30% energy reduction thresholds. See the LEED-NC energy modeling guidelines for an overview of the energy modeling process and specific guidance on creating the energy model.
Start the energy modeling by building the design-case model. Follow Section 11 (Energy Cost Budget) or Appendix G (Performance Rating Method) of ASHRAE 90.1-2007 guidelines for assistance with modeling parameters. Input the existing building’s envelope characteristics, but use project design specifications for energy-using equipment and systems.
Determine the energy model’s scope. In general, to simulate the performance of building systems an energy model has to include all spaces served by a common HVAC system. However, central HVAC systems often extend beyond the scope of CI projects. For example, if the project scope is a single floor fit-out in a four story building, it’s likely that the building HVAC systems will serve all four floors.