Residential and hospitality projects that use low-flow showers, lavatories, and kitchen sinks (contributing to WEc3) benefit from lower energy use due to reduced overall demand for hot water. However, for energy-savings calculations, these are considered

Residential and hospitality projects that use low-flow showers, lavatories, and kitchen sinks (contributing to WEc3) benefit from lower energy use due to reduced overall demand for hot water. However, for energy-savings calculations, these are considered process loads that must be modeled as identical in baseline and design cases, or you have the choice of demonstrating the savings with ECM for process loads. 

Demonstrating reductions in non-regulated loads requires a rigorous definition of the baseline case. The loads must be totally equivalent, in terms of functionality, to the proposed design case. For example, reducing the number of computers in the buildin

Demonstrating reductions in non-regulated loads requires a rigorous definition of the baseline case. The loads must be totally equivalent, in terms of functionality, to the proposed design case. For example, reducing the number of computers in the building does not qualify as a legitimate reduction in non-regulated loads. However, the substitution of laptops for desktop computers, and utilization of flat-screen displays instead of CRTs for the same number of computers, may qualify as a reduction.

Your energy model can be a supportive design tool that provides insight into the actual performance of the building envelope and mechanical systems. It can highlight surprising results, such as a prominent feature like an efficient boiler contributing onl

Your energy model can be a supportive design tool that provides insight into the actual performance of the building envelope and mechanical systems. It can highlight surprising results, such as a prominent feature like an efficient boiler contributing only a 1% reduction in energy cost. It can also provide evidence to support operational energy-use decisions such as changing the heating or cooling set points a few degrees. 

Use your energy model to review envelope thermal and hygrothermal performance. In a heating climate, thick insulation inside the air barrier may cause condensation problems. Consider an exterior thermal barrier to protect the air barrier and to prevent co

Use your energy model to review envelope thermal and hygrothermal performance. In a heating climate, thick insulation inside the air barrier may cause condensation problems. Consider an exterior thermal barrier to protect the air barrier and to prevent condensation inside the wall cavity. Identify thermal bridges in the walls and windows that could leak heat from inside. Add thermal breaks, such as neoprene gaskets, on shelf angles, silicone beading on window frames, and use other techniques to prevent leakage from the envelope. 

One complete run of your energy model should be completed during design development to make sure the design is reducing annual energy cost by your targeted amount. This is the time when simplified models used to inform early design decisions should be rep

One complete run of your energy model should be completed during design development to make sure the design is reducing annual energy cost by your targeted amount. This is the time when simplified models used to inform early design decisions should be replaced by a more comprehensive detailed model. Run two or three alternatives to help the designers finalize envelope and system selection. Common measures to consider include high-performance windows, additional roof insulation, and more efficient boilers.