Our project is being considered for re-registration from LEED-CS v2.0 to LEED-NC v2.2. The building is 65,762 GSF with 48,664 SF of total leasable space. 25,997 SF (53%) of the building has been leased, designed, and under construction. However, the remaining 22,667 SF (47%) is unleased shell space. The unleased shell space is outside of the project scope and there is no design currently underway for this to complete work in this area. In order to pursue EA Credit 1 (Optimize Energy Performance), our engineers would like guidance on how to create their energy model based on our building situation of 53%-to-47% leased vs. shell spaces. It is their intention to model the unleased shell space as if the space were "upfit" to the same standard as the leased portion of the building. This standard would be described in a tenant improvement guidelines provided to future tenants. Please verify this method is acceptable or provide an alternate method for energy modeling.
The applicant is requesting clarification regarding energy modeling of shell spaces that do not yet include tenant fitouts. This topic has been extensively addressed in the published erratum for LEED-CSv2.0 (http://www.usgbc.org/ShowFile.aspx?DocumentID=3334), as well as previous CIR rulings (CSv2.0 Rulings dated 05/27/2008, 04/25/2008, 04/23/2008, 04/24/2008, 02/11/2008, 11/28/2007, 12/5/2007, 11/14/2007, and 05/30/2007). For LEED-CS, tenant guidelines alone are not sufficient to verify energy efficiency measures incorporated into future leased space. The published erratum indicates that documentation should be provided including lease or sales agreements verifying that 100% of the leased square footage complies with the credit requirement, and a statement signed by the owner / developer verifying that all leases and/or sales agreements will comply with the credit requirements. For future leased spaces, the letter from the owner / developer is only required if efficiency measure improvements beyond ASHRAE 90.1-2004 are reflected in the future leased spaces (e.g. improved lighting power density, improved HVAC efficiency, etc.). Applicable Internationally.