Hi, we are working on a LEED NC 2009 project consisting of an office building, where the thermal energy (heating via hot water) is generated and distributed by means of a municipal grid (about 40 million of square meters of served volume) served by thermal plants consisted of turbines, boilers, incinerator and cogenerators.
It is our first case in which we aim to follow DES option 2 (full accounting). According to appendix C of the DES guidance, we need the following information:
- Total annual MBTU of fuel at the plant (using fuel meters);
- Total annual MBTU of hot water delivered to the building serviced by the district plant (using BTU meters)
- Total annual pump energy for the hot water primary loop and distribution loops
We asked to the public authority that and manage the Municipal Energy system but, due to the technical complexity, size of the plant and the employment of distinct typology of fuels our request has been denied except for a global conversion factor between primary and final energy.
The building under LEED certification is designed to achieve high energy performances, for instance it is able to satisfy whole electric energy demand by means on-site site photovoltaic generation.
Despite to an high performing design, it seems that we cannot pursue the maximum score available due the external limitation in terms of plant’s information.
Have you any suggestion to solve this issue?
Thanks in advance.
Marcus Sheffer
LEED Fellow7group / Energy Opportunities
LEEDuser Expert
5909 thumbs up
September 10, 2014 - 4:31 pm
Ciao Fabio,
All European projects can use this other district energy system protocol - http://www.usgbc.org/resources/treatment-scandinavian-district-energy-sy... - have you checked into this alternative?
If this works you owe me a grappa or two.
FABIO VIERO
Head of SustainabilityManens S.p.A.
18 thumbs up
September 11, 2014 - 9:52 am
Hi Marcus!
We have checked the Scandinavian protocol and we have a couple of doubts:
- Can we use directly the PER (total primary energy factor for district heating) coming from the Energy Authority throw auto declaration, without calculate by means of 4.1-Equation 1? Unfortunately, we cannot know energies values in fuel, used for heat production.
- Appendix A gives the specifics Scandinavian primary energy factors for fuels, however Italian factors are different. Therefore, which would be appropriate for our case?
Many thanks, see you soon with a rich assortment of grappa!!!
Marcus Sheffer
LEED Fellow7group / Energy Opportunities
LEEDuser Expert
5909 thumbs up
September 19, 2014 - 6:20 pm
Ah you are making e earn my grappa assortment! I will have to look at the document in more detail and get back to you next week.
Marcus Sheffer
LEED Fellow7group / Energy Opportunities
LEEDuser Expert
5909 thumbs up
October 20, 2014 - 11:37 am
Using the PEFdh provided by the local utility should be acceptable as long as you can document that it was calculated by the utility using the same formula as Equation 1 in Section 4.1. You will also need the greenhouse gas emission factor (Кdh) which must be calculated using Equation 4 in Section 6.1.
You are correct that the primary energy factors for fuels in Appendix A Table 5 (as well as the total emission factors in Table 6) are specific to Scandinavian projects. The values used for other European countries should be consistent with their own regional values. Also note that Equation 6 in Section 8 is based on oil as the fossil alternative because it is commonly available in Scandinavia, but for other places in Europe the most common fuel source for heating is natural gas rather than fuel oil, so Equation 6 should be adjusted to use the local market natural gas price.