LEEDuser’s viewpoint
Frank advice from LEED experts
LEED is changing all the time, and every project is unique. Even seasoned professionals can miss a critical detail and lose a credit or even a prerequisite at the last minute. Our expert advice guides our LEEDuser Premium members and saves you valuable time.
Credit language
© Copyright U.S. Green Building Council, Inc. All rights reserved.
Intent
This prerequisite applies to projects registered prior to March 1, 2024. Projects registered after March 1, 2024 are subject to the v4 2024 Update
To achieve increasing levels of energy performance beyond the prerequisite standard to reduce environmental and economic harms associated with excessive energy use.
Requirements
Establish an energy performance target no later than the schematic design phase. The target must be established as kBtu per square foot-year (kWh per square meter-year) of source energy use.
Choose one of the options below.
Option 1. Whole-building energy simulation (1–18 points except Schools and Healthcare, 1–16 points Schools, 1–20 points Healthcare)
Analyze efficiency measures during the design process and account for the results in design decision making. Use energy simulation of efficiency opportunities, past energy simulation analyses for similar buildings, or published data (e.g., Advanced Energy Design Guides) from analyses for similar buildings.
Analyze efficiency measures, focusing on load reduction and HVAC-related strategies (passive measures are acceptable) appropriate for the facility. Project potential energy savings and holistic project cost implications related to all affected systems.
Project teams pursuing the Integrative Process credit must complete the basic energy analysis for that credit before conducting the energy simulation.
Follow the criteria in EA Prerequisite Minimum Energy Performance to demonstrate a percentage improvement in the proposed building performance rating compared with the baseline. Points are awarded according to Table 1.
Table 1. Points for percentage improvement in energy performance
New Construction |
Major Renovation |
Core and Shell |
Points (except Schools, Healthcare) |
Points Healthcare |
Points Schools |
---|---|---|---|---|---|
6% |
4% |
3% |
1 |
3 |
1 |
8% |
6% |
5% |
2 |
4 |
2 |
10% |
8% |
7% |
3 |
5 |
3 |
12% |
10% |
9% |
4 |
6 |
4 |
14% |
12% |
11% |
5 |
7 |
5 |
16% |
14% |
13% |
6 |
8 |
6 |
18% |
16% |
15% |
7 |
9 |
7 |
20% |
18% |
17% |
8 |
10 |
8 |
22% |
20% |
19% |
9 |
11 |
9 |
24% |
22% |
21% |
10 |
12 |
10 |
26% |
24% |
23% |
11 |
13 |
11 |
29% |
27% |
26% |
12 |
14 |
12 |
32% |
30% |
29% |
13 |
15 |
13 |
35% |
33% |
32% |
14 |
16 |
14 |
38% |
36% |
35% |
15 |
17 |
15 |
42% |
40% |
39% |
16 |
18 |
16 |
46% |
44% |
43% |
17 |
19 |
- |
50% |
48% |
47% |
18 |
20 |
- |
OR
Option 2. Prescriptive compliance: ASHRAE Advanced Energy Design Guide (1–6 points)
To be eligible for Option 2, projects must use Option 2 in EA Prerequisite Minimum Energy Performance.
Implement and document compliance with the applicable recommendations and standards in Chapter 4, Design Strategies and Recommendations by Climate Zone, for the appropriate ASHRAE 50% Advanced Energy Design Guide and climate zone. For projects outside the U.S., consult ASHRAE/ASHRAE/IESNA Standard 90.1–2010, Appendixes B and D, to determine the appropriate climate zone.
ASHRAE 50% Advanced Energy Design Guide for Small to Medium Office Buildings- Building envelope, opaque: roofs, walls, floors, slabs, doors, and continuous air barriers (1 point)
- Building envelope, glazing: vertical fenestration (1 point)
- Interior lighting, including daylighting and interior finishes (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment and controls (1 point)
- Building envelope, opaque: roofs, walls, floors, slabs, doors, and vestibules (1 point)
- Building envelope, glazing: fenestration - all orientations (1 point)
- Interior lighting, excluding lighting power density for sales floor (1 point)
- Additional interior lighting for sales floor (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment choices and controls (1 point)
- Building envelope, opaque: roofs, walls, floors, slabs, and doors (1 point)
- Building envelope, glazing: vertical fenestration (1 point)
- Interior lighting, including daylighting and interior finishes (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment choices, controls, and kitchen equipment (1 point)
- Building envelope, opaque: roofs, walls, floors, slabs, doors, vestibules, and continuous air barriers (1 point)
- Building envelope, glazing: vertical fenestration (1 point)
- Interior lighting, including daylighting (form or nonform driven) and interior finishes (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment choices, controls, and kitchen equipment (1 point)
Pilot ACPs Available
The following pilot alternative compliance path is available for this credit. See the pilot credit library for more information.
EApc95: Alternative Energy Performance Metric ACP
EApc107 - Energy performance metering path
[view:embed_resource=page_1=7489432]What does it cost?
Cost estimates for this credit
On each BD+C v4 credit, LEEDuser offers the wisdom of a team of architects, engineers, cost estimators, and LEED experts with hundreds of LEED projects between then. They analyzed the sustainable design strategies associated with each LEED credit, but also to assign actual costs to those strategies.
Our tab contains overall cost guidance, notes on what “soft costs” to expect, and a strategy-by-strategy breakdown of what to consider and what it might cost, in percentage premiums, actual costs, or both.
This information is also available in a full PDF download in The Cost of LEED v4 report.
Learn more about The Cost of LEED v4 »Frequently asked questions
See all forum discussions about this credit »Addenda
"Projects in Canada may instead demonstrate a percentage improvement in the proposed building performance rating compared with the baseline according to the National Energy Code for Buildings (NECB) 2011. The same percentage improvement in energy performance is required to meet the Prerequisite, and the same points for percentage improvement in energy performance are applicable for the Credit.
The following conditions (where applicable) must be met. Note that unless otherwise noted, CanQUEST (the Canadian energy modelling software based on eQUEST that performs NECB 2011 compliance runs) does not implement these conditions correctly and would require corresponding modifications to the Reference case.
1. Comply with mandatory requirements of ASHRAE 90.1-2010
ASHRAE 90.1-2010 mandatory requirements must be met, in addition to the performance path limitations referenced in the NECB 2011 Sections 3.4.1.2, 5.4.1.2 and 6.4.1.2. In cases where ASHRAE and the NECBC reference requirements concerning the same item, the more stringent requirement shall be adhered to.
2. Apply fenestration area convention similar to ASHRAE 90.1-2010
Maintain the same FWR (as defined by NECB, including doors) for the Reference as exists in the Proposed Design, up to the prescribed maximum. If the Proposed Design’s FWR exceeds the prescribed FWR, scale down the fenestrations in the Reference case accordingly.
3. Apply skylight area convention similar to ASHRAE 90.1-2010
Maintain the same SRR for the Reference as exists in the Proposed Design, up to the prescribed 5% maximum. If the Proposed Design’s SRR exceeds 5%, scale down the skylights in the Reference case accordingly.
4. Model proposed and reference outside air similar to ASHRAE 90.1-2010
Proposed and reference (baseline) outside air rates shall be modelled as per ASHRAE 90.1 – 2010 (G3.1.2.6).
5. Apply ASHRAE kitchen exhaust demand ventilation requirements
Provide for the same demand ventilation requirements as described in ASHRAE Appendix G3.1.1.d.
6. Apply ASHRAE’s chiller heat recovery requirements
Provide for the same chiller heat recovery requirements as applies to ASHRAE.
7. Apply supply air temperature reset controlled based on warmest zone
Reset the minimum supply air temperature to satisfy the cooling requirements of the warmest zone, as stipulated in NECB Section 5.2.8.8. Note that this control setting is already corrected in CanQUEST for the Reference case.
8. Account for uninsulated structural penetrations if they exceed 2% of net wall area
The 2% allowance may be applied, but based on the net opaque wall area, not the entire building envelope area.
9. Follow ASHRAE/LEED rules for renovations to existing buildings
Model existing components consistent with ASHRAE and LEED provisions.
10. Account for all anticipated energy use in building
Fully account for all energy end-uses in the energy performance modeling."
As of 10/1/16, please note the following clarifications for the ACP language in the LEED credit library:
1. Clarify that the metric is cost.
2. Clarify that CanQUEST does not implement many of the ASHRAE 90.1-2010 conditions.
3. Provide exemptions to a few 90.1 mandatory provisions, which are identified as exempt in the ACP calculator.
4. Provide guidance for projects with district energy systems – see condition #11 in ACP language.
Clarification is requested regarding whether garage demand control ventilation may be modeled for credit. Garage Ventilation is not addressed by ASHRAE 90.1 – 2007, Appendix G, therefore if savings is claimed it must be modeled as an Exceptional Calculation Measure (ECM). Garage demand control ventilation is increasingly becoming standard practice in newly constructed buildings. In order to take credit for this measure as an ECM, it must be demonstrated that the proposed design goes beyond standard practice.
ECMs must be approved by the Rating Authority. As the Rating Authority for LEED projects, the GBCI will accept an ECM for garage demand control ventilation under the following circumstances:
1) Baseline case shall meet the requirements of ASHRAE 90.1-2010, Section 6.4.3.4.5 Enclosed Parking Garage Ventilation. Baseline fan volume shall be based on the minimum required ASHRAE 62.1 parking ventilation rates of 0.75 cfm / square foot. Baseline system fan power shall be calculated at 0.3 watts per CFM.
2) Proposed case shall reflect the actual design. Evidence shall be provided documenting that demand control ventilation strategies are sufficient to automatically detect contaminant levels of concern in parking garages (for example, Carbon Monoxide, Particulates, VOCs, etc. and NO2) and modulate airflow such that contaminant levels are maintained below specified contaminant concentration as identified in ASHRAE 62.1-2010 Addendum d. Evidence shall also be provided that contaminant sensors are placed in space in an appropriate manner for detection of contaminant in question, included in the building commissioning plan upon installation, and then calibrated yearly following installation.
The contaminants of concern that must be monitored may be limited to CO if a narrative is provided justifying how the controls will also help to limit NO2, VOCs and PM2.5 concentrations. The narrative should address how the parking garage minimum exhaust flow rate and/or the minimum fan run time (if applicable) are maintained, and provide clarification that other contaminant levels are expected to remain low based on that design. Note that NO2 would also be expected to be monitored in garages where more than 20% of the vehicles are anticipated to be diesel-fueled.
Note: though it does not need to be addressed specifically in the narrative, the project team must confirm compliance of all ASHRAE 62.1 mandatory measures, including the measure addressing “Buildings with Attached Parking Garages” requiring limitation of vehicular exhaust into adjacent spaces. .
3) If other activities occur in the garage area, the ventilation for these uses shall be in addition to garage vehicle ventilation.
4) Proposed case shall be modeled such that a minimum air flow of 0.05 cfm/square foot is maintained.
5) A narrative shall describe all Baseline and Proposed case assumptions included for this measure, and the calculation methodology used to determine the projected savings. The narrative and energy savings should be reported separately from the other efficiency measures in the LEED Form.
6) No more than a 75% fan energy savings shall be claimed for this measure.
UPDATED on 01/05/18 for rating system version applicability and in Section (2) to clarify that not all contaminants of concern must be continuously monitored.
Our project is located in California. To pursue Option 1: Whole Building Simulation, is there a methodology for documenting additional energy performance for LEED v4 projects regulated by Title 24-2016?
Project Type1
Additional Percent Savings
NC-Office
7%
NC-Retail (except restaurant/grocery)
8%
NC-School
7%
NC-Health Care
0%
NC-Restaurant/Grocery
0%
NC-Hospitality
8%
NC-Warehouse
0%
NC-Multifamily
8%
NC-All Other
0%
CS-Office
5%
CS-Retail (except restaurant/grocery)
7%
CS-School
5%
CS-Health Care
0%
CS-Restaurant/Grocery
0%
CS-Hospitality
7%
CS-Warehouse
0%
CS-Multifamily
7%
CS-All Other
0%
CI-Office
6%
CI-Retail (except restaurant/grocery)
7%
CI-School
6%
CI-Health Care
0%
CI-Restaurant/Grocery
0%
CI-Hospitality
7%
CI-Warehouse
0%
CI-Multifamily
7%
CI-All Other
0%
This project is located in State College, Pennsylvania. The project involves a single greenhouse structure approximately 42ft by 108ft (4536 s.f.) for use by a Community Supported Agriculture (CSA) farm using sustainable and organic growing practices. Existing nearby facilities are able to serve as the only additional support space required leaving the greenhouse structure to serve as a single greenhouse space. Unlike the greenhouse identified in the CIR dated 1/8/2007, this project has no governing authority regarding energy conservation and the project\'s Authority Having Jurisdiction (AHJ) only governs this structure in regards to fire and life safety per the International Building Code (IBC) 2006 section 312.1. Therefore, we are requesting that the USGBC act as the AHJ for the greenhouse energy conservation requirements and ASHRAE 90.1 (2004) interpretations in effort to meet EAp2 of LEED v2.2. Per the ruling of the CIR submitted on 4/30/2008, the sole function of the building envelope is related to plant growth and therefore exempt from the prescriptive requirements of ASHRAE 90.1 (2004). However, unlike the greenhouse from the CIR dated 4/30/2008, this project does not involve additional spaces that are required to meet further requirements of the Standard. Therefore, no minimum requirements exist for the greenhouse building envelope for use in an energy model comparison in effort to achieve credits through EAcr1. In order to compare our proposed greenhouse design against a baseline, we are proposing the following approach: 1.) Since the amount of window used for the greenhouse impacts plant growth, we request that the greenhouse envelope be exempt from ASHRAE 90.1 (2004) item 5.5.4.2.1 and table G3.1.5 in regards to maximum window area permitted in the proposed design and model. We propose that both baseline and proposed design models have the same amount of window area without a limitation on the percent of gross wall area that can be modeled as window for the proposed design. 2.) We propose using the baseline window U-value of 0.98 from ASHRAE 90.1 (2004) table 5.5-5 for fixed vertical glazing in a semi-heated space equal to 40.1 to 50% of wall since this is the maximum percentage range provided and given the baseline window U-value permitted for CIR dated 1/8/2007. We request that the USGBC permit the space to be classified as semi-heated per ASHRAE 90.1 (2004) item 5.1.2.3 given that it is a process space not conditioned for human comfort. 3.) We propose to treat greenhouse lighting as unregulated lighting per ASHRAE 90.1 (2004) item 9.2.2.3 and the ruling for CIR submitted on 4/30/2008 and model the lighting identical in the baseline and proposed design models with the allowance to include daylighting controls in the proposed model only since it would result in additional energy savings and given it is above and beyond the bare minimum lighting system required for the growing process. 4.) We propose to use the minimum requirements for space heating of ASHRAE 90.1 (2004) in the baseline model in order to improve upon space heating energy efficiency in the proposed design in lieu of modeling space conditioning the same in the baseline and proposed design models as identified in the ruling for CIR submitted on 4/30/2008. For this application , we interpret ASHRAE 90.1 (2004) to prescribe an oil or gas-fired furnace with the prescribed minimum performance. Per AHRAE 90.1 (2004), all space conditioning setpoints and schedules shall remain the same between the baseline and proposed design models. Please confirm that this approach is acceptable.
The project is requesting guidance on creating the baseline energy model for a standalone greenhouse. The requested approach as detailed is acceptable. For certification, please provide a narrative describing the criteria for establishing your baseline and any applicable CIRs. Applicable Internationally.
***update 11.9.2020
Now applicable to LEED v4 projects: replace all instances of "ASHRAE 90.1-2007" with "ASHRAE 90.1-2010
There is significant confusion, and seemingly contradictory LEED Interpretations on the required methodology for addressing “purchased” on-site renewable energy, and/or purchased biofuel that is not considered on-site renewable energy within the LEED energy model. For renewable fuels meeting the requirements of Addendum 100001081 (November 1, 2011) or other purchased renewable fuels, how should purchased on-site renewable energy be treated in the LEED energy model? How should purchased bio-fuels (meaning it I not fossil fuel but is used in a similar manner to bio-fuel) be treated in the energy model?
For any on-site renewable fuel source that is purchased (such as qualifying wood pellets, etc.), or for biofuels not qualifying as on-site renewable fuel sources that are purchased, the actual energy costs associated with the purchased energy must be modeled in EA Prerequisite 2: Minimum Energy Performance and EA Credit 1: Optimize Energy Performance, and the renewable fuel source may not be modeled as "free", since it is a purchased energy source.
For non-traditional fuel sources (such as wood pellets) that are unregulated within ASHRAE 90.1, use the actual cost of the fuel, and provide documentation to substantiate the cost for the non-traditional fuel source. The same rates are to be used for the baseline and proposed buildings, with the following exception: If the fuel source is available at a discounted cost because it would otherwise be sent to the landfill or similarly disposed of, the project team may use local rates for the fuel for the baseline case and actual rates for the proposed case, as long as documentation is provided substantiating the difference in rates, and substantiating that the fuel source would otherwise be disposed of.
When these non-traditional fuel sources are used for heating the building, the proposed case heating source must be the same as the baseline case for systems using the non-traditional fuel source, and the project team must use fossil fuel efficiencies for the Baseline systems, or provide evidence justifying that the baseline efficiencies represent standard practice for a similar, newly constructed project with the same fuel source.
Updated 8/7/17 for rating system applicability.
Our project is subject to ASHRAE Standard 90.1-2013 for code compliance. To pursue Option 1: Whole Building Simulation, is there a methodology for documenting additional energy performance for LEED v4 projects regulated by ASHRAE Standard 90.1-2013?
Yes, projects applying Option 1: Whole Building Simulation, and regulated by ASHRAE Standard 90.1-2013 may document additional energy performance improvement under LEED v4 EA credit Optimize Energy Performance as described below. The Appendix G modeling method must be used for the LEED submission, even if the Energy Cost Budget method is used to document local code compliance.
Projects may calculate the Equivalent ASHRAE 90.1-2010 Performance improvement as:
Equivalent performance Improvement = % better than ASHRAE 90.1-2013 + Additional Percent Savings
Projects subject to the v4 2024 update may apply the additional percent savings to each metric (cost, source energy, greenhouse gas emissions)
Where Additional Percent Savings is shown in Table 1:
Table 1: Additional Percent Savings for ASHRAE 90.1-2013
Project Type1 Additional Percent Savings
NC-Office 5%
NC-Retail (except restaurant/grocery) 5%
NC-School 6%
NC-Health Care 3%
NC-Restaurant / Grocery 3%
NC-Hospitality 5%
NC-Warehouse 1%
NC-Multifamily 3%
NC-All Other 2%
CS-Office 3%
CS-Retail (except restaurant/grocery) 3%
CS-School 6%
CS-Health Care 1%
CS-Restaurant / Grocery 2%
CS-Hospitality 3%
CS-Warehouse 0%
CS-Multifamily 1%
CS-All Other 1%
CI-Office 3%
CI-Retail (except restaurant/grocery) 4%
CI-School 6%
CI-Health Care 2%
CI-Restaurant / Grocery 3%
CI-Hospitality 4%
CI-Warehouse 0%
CI-Multifamily 1%
CI-All Other 2%
1 Mixed use buildings shall use the weighted average Additional Percent Savings based on the gross enclosed floor area associated with each building type. Unfinished spaces not submitted in the CS rating system shall use the CS values. Data center space must always be considered “All Other”.
***Updated March 1, 2024 to align with changes in the LEED v4 Energy Update
Our project is located in California and subject to compliance with Title 24 2019. Title 24 2019 has requirements for lighting power density more stringent than those requirements in ASHRAE 90.1-2010, and unfinished spaces in our project will be subject to the Title 24 2019 requirements.
For LEED credit compliance, our team plans to follow ASHRAE 90.1-2010 modeling. How can we document credit for Title 24 2019 compliant lighting in unfinished spaces?
Building Type*
Unfinished Space Lighting Power Density
Automotive Facility
0.70
Convention Center
0.80
Courthouse
0.80
Dining: Bar Lounge/Leisure
0.75
Dining: Cafeteria/Fast Food
0.70
Dining: Family
0.70
Dormitory
0.61
Exercise Center
0.70
Fire Station
0.71
Gymnasium
0.80
Healthcare Clinic
0.87
Hospital
1.05
Hotel
1.00
Library
0.95
Manufacturing Facility
0.90
Motel
0.88
Motion Picture Theater
0.75
Multifamily
0.60
Museum
1.06
Office
0.72
Parking Garage
0.17
Penitentiary
0.97
Performing Arts Theater
1.10
Police Station
0.96
Post Office
0.8
Religious Building
0.85
Retail: Grocery
1.05
Retail
1.00
School/University
0.72
Sports Arena
0.78
Town Hall
0.85
Transportation
0.60
Warehouse
0.55
Workshop
1.10
Our project is located in California. To pursue Option 1: Whole Building Simulation, is there a methodology for documenting additional energy performance for LEED v4 projects regulated by Title 24-2016 or later?
Project Type(NC = New Construction)
(CS = Core & Shell or unfinished space)
(CI = Interior Fitout)
Additional Percent Savings
Title 24 2016 /
Title 24 2019
Title 24 2022 (or later)
Added to ASHRAE 90.1-2010 (v4)
Added to ASHRAE 90.1-2010 (v4)
Added to ASHRAE 90.1-2016 (v4.1)
TDV Energy (replacing cost & GHG metrics)
TDV Energy (replacing cost metric)
SOURCE Energy (replacing GHG metric)
TDV Energy (replacing cost metric)
SOURCE Energy (replacing GHG metric)
Building Design & Construction (BD+C):
NC - Office
7%
18%
20%
4%
6%
NC - Retail (except restaurant/grocery)
8%
25%
29%
10%
14%
NC - Restaurant / Grocery
0%
18%
20%
4%
6%
NC – School
7%
20%
25%
5%
10%
NC – Healthcare
0%
8%
8%
2%
2%
NC – Hospitality
8%
15%
20%
0%
5%
NC – Warehouse
0%
28%
28%
10%
10%
NC – Multifamily (4+ stories)
8%
16%
20%
4%
8%
Multifamily low-rise (<4 stories)1
8%
16%
20%
4%
8%
Single family residential1
8%
16%
20%
4%
8%
Data Center
0%
10%
10%
0%
0%
All Other (< 50% unregulated TDV)
0%
15%
15%
5%
5%
All Other (≥50% unregulated TDV)
0%
8%
8%
0%
0%
CS-Office
5%
12%
16%
1%
4%
CS-Retail (except restaurant/grocery)
7%
20%
25%
5%
10%
CS-Restaurant/grocery
0%
13%
15%
2%
3%
CS-School
7%
15%
20%
2%
8%
CS-Healthcare
0%
8%
8%
2%
2%
CS-Hospitality
7%
11%
15%
0%
4%
CS-Warehouse
0%
21%
21%
6%
6%
CS-Multifamily
7%
9%
13%
1%
4%
CS-All Other
0%
8%
8%
0%
0%
Interior Design & Construction (ID+C):
CI-Office
6%
Use v4.1
Use v4.1
0%
0%
CI-Retail (except restaurant/grocery)
7%
Use v4.1
Use v4.1
6%
6%
CI-Restaurant/grocery
0%
Use v4.1
Use v4.1
0%
0%
CI-School
7%
Use v4.1
Use v4.1
3%
3%
CI-Healthcare
0%
Use v4.1
Use v4.1
0%
0%
CI-Hospitality
7%
Use v4.1
Use v4.1
0%
0%
CI-Warehouse
0%
Use v4.1
Use v4.1
9%
9%
CI-Multifamily
7%
Use v4.1
Use v4.1
0%
0%
CI-All Other
0%
Use v4.1
Use v4.1
0%
0%
Documentation toolkit
The motherlode of cheat sheets
LEEDuser’s Documentation Toolkit is loaded with calculators to help assess credit compliance, tracking spreadsheets for materials, sample templates to help guide your narratives and LEED Online submissions, and examples of actual submissions from certified LEED projects for you to check your work against. To get your plaque, start with the right toolkit.
Get the inside scoop
Our editors have written a detailed analysis of nearly every LEED credit, and LEEDuser premium members get full access. We’ll tell you whether the credit is easy to accomplish or better left alone, and we provide insider tips on how to document it successfully.
© Copyright U.S. Green Building Council, Inc. All rights reserved.
Intent
This prerequisite applies to projects registered prior to March 1, 2024. Projects registered after March 1, 2024 are subject to the v4 2024 Update
To achieve increasing levels of energy performance beyond the prerequisite standard to reduce environmental and economic harms associated with excessive energy use.
Requirements
Establish an energy performance target no later than the schematic design phase. The target must be established as kBtu per square foot-year (kWh per square meter-year) of source energy use.
Choose one of the options below.
Option 1. Whole-building energy simulation (1–18 points except Schools and Healthcare, 1–16 points Schools, 1–20 points Healthcare)
Analyze efficiency measures during the design process and account for the results in design decision making. Use energy simulation of efficiency opportunities, past energy simulation analyses for similar buildings, or published data (e.g., Advanced Energy Design Guides) from analyses for similar buildings.
Analyze efficiency measures, focusing on load reduction and HVAC-related strategies (passive measures are acceptable) appropriate for the facility. Project potential energy savings and holistic project cost implications related to all affected systems.
Project teams pursuing the Integrative Process credit must complete the basic energy analysis for that credit before conducting the energy simulation.
Follow the criteria in EA Prerequisite Minimum Energy Performance to demonstrate a percentage improvement in the proposed building performance rating compared with the baseline. Points are awarded according to Table 1.
Table 1. Points for percentage improvement in energy performance
New Construction |
Major Renovation |
Core and Shell |
Points (except Schools, Healthcare) |
Points Healthcare |
Points Schools |
---|---|---|---|---|---|
6% |
4% |
3% |
1 |
3 |
1 |
8% |
6% |
5% |
2 |
4 |
2 |
10% |
8% |
7% |
3 |
5 |
3 |
12% |
10% |
9% |
4 |
6 |
4 |
14% |
12% |
11% |
5 |
7 |
5 |
16% |
14% |
13% |
6 |
8 |
6 |
18% |
16% |
15% |
7 |
9 |
7 |
20% |
18% |
17% |
8 |
10 |
8 |
22% |
20% |
19% |
9 |
11 |
9 |
24% |
22% |
21% |
10 |
12 |
10 |
26% |
24% |
23% |
11 |
13 |
11 |
29% |
27% |
26% |
12 |
14 |
12 |
32% |
30% |
29% |
13 |
15 |
13 |
35% |
33% |
32% |
14 |
16 |
14 |
38% |
36% |
35% |
15 |
17 |
15 |
42% |
40% |
39% |
16 |
18 |
16 |
46% |
44% |
43% |
17 |
19 |
- |
50% |
48% |
47% |
18 |
20 |
- |
OR
Option 2. Prescriptive compliance: ASHRAE Advanced Energy Design Guide (1–6 points)
To be eligible for Option 2, projects must use Option 2 in EA Prerequisite Minimum Energy Performance.
Implement and document compliance with the applicable recommendations and standards in Chapter 4, Design Strategies and Recommendations by Climate Zone, for the appropriate ASHRAE 50% Advanced Energy Design Guide and climate zone. For projects outside the U.S., consult ASHRAE/ASHRAE/IESNA Standard 90.1–2010, Appendixes B and D, to determine the appropriate climate zone.
ASHRAE 50% Advanced Energy Design Guide for Small to Medium Office Buildings- Building envelope, opaque: roofs, walls, floors, slabs, doors, and continuous air barriers (1 point)
- Building envelope, glazing: vertical fenestration (1 point)
- Interior lighting, including daylighting and interior finishes (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment and controls (1 point)
- Building envelope, opaque: roofs, walls, floors, slabs, doors, and vestibules (1 point)
- Building envelope, glazing: fenestration - all orientations (1 point)
- Interior lighting, excluding lighting power density for sales floor (1 point)
- Additional interior lighting for sales floor (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment choices and controls (1 point)
- Building envelope, opaque: roofs, walls, floors, slabs, and doors (1 point)
- Building envelope, glazing: vertical fenestration (1 point)
- Interior lighting, including daylighting and interior finishes (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment choices, controls, and kitchen equipment (1 point)
- Building envelope, opaque: roofs, walls, floors, slabs, doors, vestibules, and continuous air barriers (1 point)
- Building envelope, glazing: vertical fenestration (1 point)
- Interior lighting, including daylighting (form or nonform driven) and interior finishes (1 point)
- Exterior lighting (1 point)
- Plug loads, including equipment choices, controls, and kitchen equipment (1 point)
Pilot ACPs Available
The following pilot alternative compliance path is available for this credit. See the pilot credit library for more information.
EApc95: Alternative Energy Performance Metric ACP
EApc107 - Energy performance metering path
[view:embed_resource=page_1=7489432]Cost estimates for this credit
On each BD+C v4 credit, LEEDuser offers the wisdom of a team of architects, engineers, cost estimators, and LEED experts with hundreds of LEED projects between then. They analyzed the sustainable design strategies associated with each LEED credit, but also to assign actual costs to those strategies.
Our tab contains overall cost guidance, notes on what “soft costs” to expect, and a strategy-by-strategy breakdown of what to consider and what it might cost, in percentage premiums, actual costs, or both.
This information is also available in a full PDF download in The Cost of LEED v4 report.
Learn more about The Cost of LEED v4 »In the end, LEED is all about documentation. LEEDuser’s Documentation Toolkit, for premium members only, saves you time and helps you avoid mistakes with:
- Calculators to help assess credit compliance.
- Tracking spreadsheets for materials purchases.
- Spreadsheets and forms to give to subs and other team members.
- Guidance documents on arcane LEED issues.
- Sample templates to help guide your narratives and LEED Online submissions.
- Examples of actual submissions from certified LEED projects.