CO2 sensors are not standard practice and typically cost $500–$1000 per sensor including installation. Installing CO2 sensors is becoming more common and this price may come down, however. Costs can add up quickly if several sensors are required. In applications with many densely occupied spaces and isolated mechanical systems, like hotels and multifamily, providing CO2 sensors and the associated controls for each unit could become costly, without much added benefit.
Outdoor airflow monitoring devices are the single most costly component of this credit, ranging from $1,000–$5,000 per monitor, depending on size of the ducts and product type. You can reduce this cost by minimizing the number of supply ducts coming into the building. Centralized systems minimize these ducts, thereby minimizing cost.
Bioinfiltration strategies on streets and parking lots such as bioswales and grass filter strips are alternatives to typical curb and gutter design that allow for infiltration of stormwater, as opposed to conveying the runoff to storm drains.
Mitigate cost premiums by getting the most from stormwater strategies. Onsite treatment and retention strategies like green roofs and rainwater cisterns can be costly, but may serve additional purposes and contribute to other LEED credits, including open space requirements (SSc5.2), mitigating the urban heat island effect (SSc7.2), and reducing potable water use for landscaping (WEc1). Features such as constructed wetlands, green roofs, and bioswales can also increase property value.
Integrating the stormwater plan into the design at an early stage and calculating the stormwater reduction percentages significantly decreases additional costs. This way, landscaping and building infrastructure can be designed with stormwater reduction in mind.
Most municipalities require stormwater documentation. In these cases, the documentation for LEED requirements should not represent a significant soft-cost premium.
Indirect benefits of stormwater systems are just as real as direct costs to the project, but can be harder to quantify. These include issues like reducing the burden on the municipal system; reducing contaminants in waterways; reducing peak runoff, making stream habitats more consistent; reducing the temperature of runoff, which improves the conditions for aquatic life; and reducing erosion.
Creative stormwater management techniques such as open channels, eliminating curbs and gutters, and depressed parking islands may reduce construction costs by reducing runoff and the need for more costly infrastructure.
You will probably need to go beyond standard practice to achieve this credit, requiring deliberate design and the potential for up-front cost increases. Strategies going beyond standard practice but not likely to incur additional costs include