This compliance path is top-heavy due to upfront consultant time, but it provides adequate structure to ensure that your project is in compliance with the prerequisite requirements. For some projects it may be less expensive to pursue than Option 1.
Although Option 2 is generally lower cost during the design phase than energy modeling, the compliance path is top heavy—it requires additional meeting time upfront for key design members.
Some energy-modeling software tools have a daylight-modeling capability. Using the same model for both energy and IEQc8.1: Daylight and Views—Daylight can greatly reduce the cost of your modeling efforts.
All compliance path options may require both the architectural and engineering teams to take some time in addition to project management to review the prescriptive checklists, fill out the LEED Online credit form, and develop the compliance document.
Option 1 energy simulation often requires hiring an energy modeling consultant, adding a cost (although this ranges, it is typically on the order of $0.10–$0.50/ft2 depending on the complexity). However, these fees produce high value in terms of design and decision-making assistance, and especially for complex or larger projects can be well worth the investment.
Option 1 energy simulation provides monthly and annual operating energy use and cost breakdowns. You can complete multiple iterations, refining energy-efficiency strategies each time. Payback periods can be quickly computed for efficiency strategies using their additional first costs. A building’s life is assumed to be 60 years. A payback period of five years is considered a very good choice, and 10 years is typically considered reasonable.
Don’t plan on using onsite renewable energy generation (see EAc2) to make your building energy-efficient. It is almost always more cost-effective to make an efficient building, and then to add renewables like photovoltaics as the “icing” on the cake.