ALL OPTIONS

This active sample form has been modified for offline access. Modified fields and instructions are indicated in purple. Sample forms are for reference only.

Note: The content highlighted in yellow below is linked to IEQc1.3.

	Select all that apply to the project building:	
	▼ The project building is mechanically ventilated, in part or in whole.	
	The project building is naturally ventilated, in part or in whole.	
	The project building is mechanically conditioned, in part or in who	le.
	The project building is naturally conditioned, in part or in whole.	
	MECHANICAL VENTILATION	Select these if the
	Performance period start:	building is mechanically
	Performance period end:	ventilated and all
		systems meet ASHRAE.
	Select all that apply to the project space:	eyeteme meet/term tte.
	Case 1. One or more AHUs are able to meet the ASHRAE 62.1-2007 outdoor air requirement.	Standard
	Case 2. One or more AHUs are unable to meet the ASHRAE 62.1-2007 outdoor air requirement.	Standard
-	FO 11 00 1	

Choose either the form or the 62MZ to complete the ventilation rate procedure calculations

AHUS THAT MEET ASHRAE STANDARD 62 1-2007 OUTDOOR AIR REQUIREMENTS

The ASHRAE 62.1-2007 Ventilation Rate Procedure documentation for each air handling unit must be submitted using one of the documentation methods below. All documentation methods should account for the worst case ventilation conditions (generally heating mode), and should list all relevant variables used in the calculations (e.g. Ez, Ds, Ev, etc.). All AHUs must be included in one, not all, of the documents below.

Select one	of the	following:
------------	--------	------------

- Complete the "VRP Compliance Calculator" found in Appendix 1 of this form.
- Download, complete, and upload ASHRAE calculator "62MZCalc".

LEED 2009 for Existing Buildings: Operations and Maintenance IEQ Prerequisite 1: Minimum Indoor Air Quality Performance

Page 1 of 4

If you're already familiar withoutheu621MiZoundi All Rights Reserved calculator, this works great. If not, the USGBC form might be a little more straightforward

Include a narrative to demonstrate how systems were set to simulate worst-case conditions while outside air testing was performed

MEASUREMENT AND MAINTENANCE

For all variable air volume systems, describe how the VAV outside air flow was set up during the air flow measurements to operate at the worst-case condition expected during normal operations (i.e., fan speeds set at minimum normal operating level, OA dampers set at their minimum normal operating opening, etc.).

The worst-case scenario for the ventilation systems occurs during the heating season. In order to simulate this state, AHU's and VAV boxes were setup to operate in heating mode with a minimum outside air quantity while testing was conducted.

Required Signatory IEQp1.1. Facility Manager, Property Manager, or Building Engineer

All values of occupancy used to define minimum outside air flow requirements for this prerequisite are based on the maximum occupancy expected during normal facility operation (e.g., not design occupancy, minimum occupancy, or unusual or emergency conditions).

Include a narrative for the outside air testing methodology and the ventilation maintenance program

Describe the outside air flow measurement method or protocol used for each AHU, explaining the measurement device or system, its accuracy, and how the measurements were taken.

Outside air flow measurements were taken at each AHU room. When access was available, a Shortridge flow hood was used to take direct CFM readings. The accuracy of the flow hood is within +/- 1%. Rooms with limited access required the use of a Davis anemometer which has an accuracy of +/- 3%.

Describe the ventilation maintenance program, including a description of the periodic checks and scheduled maintenance performed, and whether the checks are manual, based on a building automation system, or both.

The ventilation system in the building consists of individual air handling units(AHU's), Outside air fans (OAF), Return air fans(RF) and Toilet exhaust fans(TEF). The building EMS records fan hours for the OAF's, RAF's and TEF's with scheduled maintenance performed every 1200 hours (approximately 3 times/year). Visual Inspections occur daily on these fans and monthly status logs are filed to ensure minimum OA requirements are documented. Specific PM procedures include checking fan filters, VFD, blade torque and angle, fan hub, motor mounts, and lubricate per manufacturers recommendation.

Include the PM documentation and...

Upload IEQp1-3. Provide documentation verifying an HVAC system maintenance program related to outdoor air introduction and exhaust was implemented for the project building during the performance period. If a building automation system is used for any ventilation components, include a periodic system status report taken during the performance period. For ventilation components handled manually, include the maintenance log written during the performance period.

Upload IEQp1-4. Upload a testing report for each type of exhaust system in the project building.

Don't forget about the exhaust testing reports!

APPENDIX

Select all that apply to the project building:

- Mechanical Ventilation Multiple Zone Unit
- Mechanical Ventilation Single Zone Unit
- Mechanical Ventilation 100% Outside Air
- Natural Ventilation

Select the appropriate system type. This is where the ventilation rate procedure calculations are run if you're not using the 62MZ calculator

Table IEQp1-A1. Mechanical Ventilation - Multiple Zone Unit

Add A	AHU	AHU																
System	Name and Number	: (AHU	11)					AHU - 7F	West									
System	Design Operating C	Condition	on					Peak hea	ating mod	de							•	
										IEQp1	Complia	nce			IEQc:	2 Compli	iance	
7	Occupancy	Rp	Ra	Occup	oancy D	ensity	Az	Vbz	_	Voz	Vdzd	Ds	Vpz	7	Vbz	Voz	7	
Zone	Category	(cfm /p)	(cfm /sf)	Default	# / 1000 sf	Pz	(sf)	(cfm)	Ez	(cfm)	(cfm)	(%)	(cfm)	Zp	(cfm)	(cfm)	Zp	
1	Office space ▼	5	0.06		0	30	4,000	390	0.8▼	488	1,400	40	560	0.87	0	0	0	[
2	Conference / meetin▼	5	0.06			12	1,000	120	0.8▼	150	720	40	288	0.52	0	0	0	
3	Break rooms ▼	5	0.06			5	500	55	0.8▼	69	200	40	80	0.86	0	0	0	
		Sys	tem P	opulatio	n withou	ut divers	ity (Ps)							47			0	
				Occup	oancy D	iversity	(D) (%)							100			0	
		S	ystem	Popula	ition wit	h Divers	ity (Ps)							47			0	
	Design S	System	Prima	ary supp	oly Airflo	ow (Vps	d) (cfm)							2,320			0	
	l	Jncorr	ected	Outdoo	r Air Inta	ake (Vou	u) (cfm)							565			0	
			Sys	stem Ve	ntilation	Efficien	icy (Ev)							0.74			0	
		Requ	iired C	Outdoor	Intake F	low (Vo	t) (cfm)							765			0	
		ı	Projec	t Desigr	n Outdo	or Airflo	w (cfm)							805				

Enter zone level data for each building AHU

Table IEQp1-A1. Mechanical Ventilation - Multiple Zone Unit



Add AHU Delete AHU		7									
System Name and Number: (AHU 1)	AHU - 7F West	AHU - 7F West									
System Design Operating Condition	Peak heating mode		▼								
		IEQc2 Compliance									

Occupancy Density Rp Occupancy Αz Zone (cfm (cfm Category (sf) /sf) Default 1000 sf 0.06 Office space 4,000 0.06 Conference / meetin▼ 12 1,000 0.06 Break rooms System Population without diversity (Ps) Occupancy Diversity (D) (%) System Population with Diversity (Ps) Design System Primary supply Airflow (Vpsd) (cfm) Uncorrected Outdoor Air Intake (Vou) (cfm) System Ventilation Efficiency (Ev) Required Outdoor Intake Flow (Vot) (cfm) Project Design Outdoor Airflow (cfm)

Heating mode is often the condition with the worst-case ventilation scenario

All zones have to be entered when using the form calculator. As an alternative, the 62MZ calculator only requires assessment of critical zones

Do not use default occupancy values unless the zone is a vacant space. Rather, use actual occupancy under typical conditions.

Make sure that the total occupancy and area addressed by the ventilation calculations are consistent with the total occupancy and area across all credits

Occup	ancy D	ensity	A7
Default	# / 1000 c	Pz	(sf)
	0	30	4,000
		12	1,000
		5	500
pulatio	n withou	ut divers	ity (Ps)
Occup	ancy D	iversity	(D) (%)
Popula	tion wit	h Divers	ity (Ps)
ary supp	ly Airflo	w (Vps	d) (cfm)
Outdooi	r Air Inta	ake (Vo	u) (cfm)
tem Ver	ntilation	Efficier	ıcy (Ev)
utdoor l	Intake F	low (Vo	t) (cfm)
t Design	Outdo	or Airflo	w (cfm)

										IEQp1	Co
	Occupancy	Rp	Ra	Occupancy Density			Az	Vbz	_	Voz	\
Zone	Category	(cfm /p)	(cfm /sf)	Default	# / 1000 sf	Pz	(sf)	(cfm)	Ez 1	(cfm)	((
1	Office space ▼	5	0.06		0	30	4,000	390	0.8▼	488	;
2	Conference / meetin▼	5	0.06			12	1,000	120	0.8▼	150)
3	Break rooms ▼	5	0.06			5	500	55	0.8▼	69	

The value for Ez is often 0.8 in heating mode. This value is dependent on the way that ventilation is supplied to the occupied space (i.e. ceiling supply)

TABLE 6-2 Zone Air Distribution Effectiveness

Air Distribution Configuration	E z
Ceiling supply of cool air	1.0
Ceiling supply of warm air and floor return	1.0
Ceiling supply of warm air 15°F (8°C) or more above space temperature and ceiling return.	0.8
Ceiling supply of warm air less than 15°F (8°C) above space temperature and ceiling return provided that the 150 fpm (0.8 m/s) supply air jet reaches to within 4.5 ft (1.4 m) of floor level. Note: For lower velocity supply air, $E_z = 0.8$.	1.0
Floor supply of cool air and ceiling return provided that the 150 fpm (0.8 m/s) supply jet reaches 4.5 ft (1.4 m) or more above the floor. Note: Most underfloor air distribution systems comply with this proviso.	1.0
Floor supply of cool air and ceiling return, provided low- velocity displacement ventilation achieves unidirectional flow and thermal stratification	1.2
Floor supply of warm air and floor return	1.0
Floor supply of warm air and ceiling return	0.7
Makeup supply drawn in on the opposite side of the room from the exhaust and/or return	0.8
Makeup supply drawn in near to the exhaust and/or return location	0.5

This value is the design total supply air (outside + re-circulated) to the zone.

		AHU - 7F	West											
		Peak heating mode												
				IEQp1	Compliar	nce			IEG					
nsity	Az	Vbz	Ez		Vdzd	Ds	Vpz	Zp	Vbz					
Pz	(sf)	(cfm)		(efm)	(cfm)	(%)	(cfm)	20	(cfm					
30	4,000	390	0.8▼	488	1,400	40	560	0.87						
12	1,000	120	0.8▼	150	720	40	288	0.52						
5	500	55	0.8▼	69	200	40	80	0.86						
divers	sity (Ps)		47											
ersity	(D) (%)							100						

The value for Ds is the percent of supply air at the condition analyzed. This should be less than 100% for a VAV system.

		AHU - 7F	West									
		Peak hea	ating mod	le								
				IEQp1	Complia	nce			IEC			
nsity	Az (sf)	Vbz (cfm)	Ez	Vez (cfm)	Vdzd (cfm)	Ds (%)	Vpz (cfm)	Zp	Vbz (cfm			
Pz	` '	, ,				` ´	` '		·			
30	4,000	390	0.8▼	488	1,400	40	560	0.87				
12	1,000	120	0.8▼	150	720	40	288	0.52				
5	500	55	0.8▼	69	200	40	80	0.86				
divers	ity (Ps)		47									
ersity	(D) (%)	_						400				

LEEDuser

Number:	(AHU	1)					AHU - 7F West							
erating C	onditio	on					Peak heating mode							
							IEQp1 Compliance							
ancy	Rp	Ra	Occup	Occupancy De		Az	Vbz	\/hz	Voz	Vdzd	Ds	Vpz		
ory	(cfm /p)	(cfm /sf)	Default	# / 1000 sf	Pz	(sf)	(cfm)	Ez	(cfm)	(cfm)	(%)	(cfm)	Zp	
-	5	0.06		0	30	4,000	390	0.8▼	488	1,400	40	560	0.87	
meetin▼	5	0.06			12	1,000	120	0.8▼	150	720	40	288	0.52	
-	5	0.06			5	500	55	0.8▼	69	200	40	80	0.86	
	Syst	em P	opulatio	n withou	ut divers	ity (Ps)	47							
			Occup	pancy D	iversity	(D) (%)	100							
	S	ystem	Popula	ation wit	h Divers	ity (Ps)	47							
esign S	ystem	Prima	ary supp	oly Airflo	w (Vps	d) (cfm)	2,320							
ι	Jncorre	ected	Outdoo	r Air Inta	ake (Vou	u) (cfm)	565							
		Sys	tem Ve	ntilation	Efficien	cy (Ev)							0.74	
	Requ	ired C	utdoor	Intake F	low (Vo	t) (cfm)	765							
	F	rojec	t Desigr	n Outdo	or Airflo	w (cfm)							805	

The values for Zp determine the system ventilation efficiency down here.

Table IEQp1-A1. Mechanical Ventilation - Multiple Zone Unit

(f) LEEDuser

Add AHU Delete AHU

System Name and Number: (AHU 1) AHU - 7F West System Design Operating Condition Peak heating mode IEQp1 Compliance IEQc2 Compliance Occupancy Density Ra Rp Occupancy Vbz Voz Vdzd Ds Vpz Vbz Voz Αz Ez Zp (cfm Zp Zone (cfm /sf) Default # / (sf) (cfm) (cfm) (cfm) (%) (cfm) (cfm) (cfm) Category Pz Office space 0.06 30 4,000 390 0.8 488 1,400 40 560 0.87 0 0 Conference / meetin▼ 0.06 12 1,000 120 0.8▼ 150 720 40 288 0.52 500 Break rooms 0.06 55 0.8▼ 69 200 40 80 0.86 System Population without diversity (Ps) 47 Occupancy Diversity (D) (%) 100 System Population with Diversity (Ps) 47 0 Design System Primary supply Airflow (Vpsd) (cfm) 2,320 0 Uncorrected Outdoor Air Intake (Vou) (cfm) 565 0 System Ventilation Efficiency (Ev) 0.74 Required Outdoor Intake Flow (Vot) (cfm) 765 Project Design Outdoor Airflow (cfm) 805

For EBOM, this is the measured outside air, not the design outdoor airflow