

August 15, 2007

Mr. Jakes Hawkes Dauphin 300 Myrtle Avenue Boonton, NJ 07005

Phone No.: (973) 263-1100

jhawkes@dauphin.com

Subject: Report of BIFMA X7.1 Emission Testing

Teo Visitor Chair

MAS Project No. M 44249

Dear Mr. Hawkes:

Materials Analytical Services, LLC. (MAS) is pleased to submit this report for emissions testing relative to potential VOC off-gassing from the **Teo Visitor Chair** sample submitted for analysis by Dauphin on July 31, 2007. This report summarizes our testing procedures and the results of our analytical measurements.

This project was conducted in general accordance with the BIFMA M7.1 standard scope of work, which you authorized. Based on our test results, the subject sample submitted for analysis meets the BIFMA X7.1 performance standard set for seating/office chairs to be classified as low-emitting products. As such, the Teo Visitor Chair is eligible for LEED's Commercial Interiors EQ 4.5 credit. Further, by successful conformance with the BIFMA standard, the Teo Visitor Chair also meets the criteria of MAS Certified Green®.

MAS is pleased to have been of service to you. If you have any questions or comments, or if we can be of further assistance to you, please do not hesitate to contact us.

Sincerely,

MATERIALS ANALYTICAL SERVICES, LLC

Martin R. Bennett

Senior Consultant

Randy Stapleton Analytical Chemist

Williank Stopher

MANUFACTURER / SAMPLE DESCRIPTION

On July 31, 2007, Dauphin submitted a sample of their Teo Visitor Chair to Materials Analytical Services, Inc. (MAS) for emissions testing. The chair was delivered to our Suwanee, Georgia office via Federal Express Ground Service arriving in the manufacturer's standard shipping container comprised of a sealed outer cardboard box containing the submitted product in an inner sealed plastic bag under chain-of-custody. The manufacturer and sample specifics as described in the accompanying chain-of custody are summarized below:

Manufacturer: Dauphin

300 Myrtle Avenue Boonton, NJ 07005

Phone: 973-263-1100 ext 118

Product Name: Teo Visitor Chair

Number of Samples: 1

Part Number	Model / Description
TO9370	Teo Visitor Chair

Manufacture Date: July 27, 2007
Collection Date: July 27, 2007
Shipping Date: July 27, 2007
Laboratory Arrival Date: July 31, 2007

SAMPLE HANDLING

Upon arrival of samples to the laboratory each was assigned a specific lab sample ID for tracking purposes. Sample ID's and a timeline of milestone dates for each of the sample are summarized below:

Lab Assigned ID	Manufacturer's Product ID	Sample Description	Test Date - Duration
M44249	Teo Visitor Chair	Orange Fabric Upholstered Arm Chair w/ Chrome Tubular Frame	8/4/07-8/11/07

EMISSIONS TESTING CONDITIONS

Per American Seating's request the subject sample was sampled and analyzed in accordance with the Business and Institutional Furniture Manufacturer's Association (BIFMA) M7.1 2005 Standard Test Method for Determining VOC Emissions from Office Furniture Systems, Components and Seating. Under the provisions of this method, testing consisted of the following procedural steps:

- Specific procedures for specimen receiving, handling, and preparation
- Storage of test specimens in original shipping containers prior to emissions testing for up to 10 days in a ventilated and conditioned room maintained at 23 ± 3 °C and $50\% \pm 15\%$ RH.
- Sample placement within MAS's large (1000 ft³) stainless steel emission chamber (interior volume 28.3 m³) and conditioning for 72 hours. Air flow into the chamber is maintained for a minimum of 168 hours at the following specifications: Ventilation Rate = 4.2 cfm, temperature = $23 \pm 1^{\circ}$ C, Relative Humidity = $50 \pm 5\%$ RH.
- Collection of air samples at 72 and 168-hours following sample conditioning. Air samples are collected from the large chamber exhaust port utilizing mass flow controllers calibrated at 200 cc/min for TVOC and at 300 cc/min for aldehydes.
- Tenax TA® tubes are used for VOC analysis which is performed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS) using a modified EPA TO 17 method. Samples are also collected on DNPH tubes for aldehyde analysis which is performed using HPLC using a modified NIOSH 2016 method.
- Instrument calibration and identification of the target list of VOCs for quantification by GC/MS (refer to attached Appendix from BIFMA M7.1-2005)

For quality assurance purposes, background samples were collected prior to running each of the product samples. The results of the emissions tests are summarized in the tables on the following page:

$Table\ Ia \\ Concentration\ of\ VOCs\ between\ n\text{-}C_6\ and\ n\text{-}C_{16} \\ Measured\ by\ GC/MS\ in\ (\mu g/m^3) \\$

VOC Name	72 nd hour			168 th hour				
v oe rame	#1	#2	Mean	% diff.	#1	#2	Mean	% diff.
4-PC	<1.3	<1.3	<1.3	0	<1.3	<1.3	<1.3	0
Total Aldehydes	<1.3	<1.3	<1.3	0	<1.3	<1.3	<1.3	0
$TVOC_{Toluene}$	15	15	15	0	12	10	11	20

Table Ib Concentration of Formaldehyde and Acetaldehyde Measured by HPLC in (µg/m³)

VOC Name 72 nd hour			168 th hour					
VOC IVanic	#1	#2	Mean	% diff.	#1	#2	Mean	% diff.
Formaldehyde	21	21	21	0	17	17	17	0
Acetaldehyde	<2.8	<2.8	<2.8	0	<2.8	<2.8	<2.8	0

 $Table\ II$ Calculated Emission Factors for Identified VOCs, TVOC $_{sum}$, and TVOC $_{Toluene}$, Formaldehyde and Acetaldehyde in (µg/h/unit) and Power-Law Model Coefficients

VOC Name	Emiss	ion Factor	Power-law Model Coefficients for E=a t ^{-b}		
VOC Name	72 nd hour	168 th hour	a	b	
4-PC	<4.6	<4.6	NA	NA	
Total Aldehydes	149	120	520.6	0.366	
$TVOC_{Toluene}$	109	80	520.6	0.366	
Formaldehyde	149	120	431.7	0.249	
Acetaldehyde	<20	<20	NA	NA	

Table III

4

Predicted Concentrations in a Typical Office Environment of a Single Office Workstation System* in (µg/m³)

VOC Name		he Measured UNITS	Based on the Power-Law Model Prediction
VOC Name	72 nd hour (3 days)	168 th hour (7 days)	336 th hour (14 days)
4-PC	< 0.61	< 0.61	< 0.61
Total Aldehydes	9.9	8.0	6.8
$TVOC_{Toluene}$	7.3	5.3	4.1
Formaldehyde	9.9	8.0	6.8
Acetaldehyde	<1.3	<1.3	<1.3

^{(*}Assuming a ventilation rate of 4.17 L/s (8.84 cfm) for a typical open plan environment or 9.63 L/s (20.4 cfm) for a typical office environment as defined by BIFMA M7.1-2005 section 6.5)

CONCLUSIONS

Based on the emissions test data, MAS offers the following findings:

• The measured concentrations of TVOC_{Toluene}, Formaldehyde, Total Aldehydes and 4-Phenylcyclohexane released from the tested chair are below the BIFMA specified emission limits set for seating:

Chemical Contaminant	Emissions Limits System Furniture
TVOC _{Toluene}	$\leq 0.5 \text{ mg/m}^3 \text{ or } \leq 500 \text{ µg/m}^3$
Formaldehyde	\leq 50 ppb or \leq 61 μ g/ m ³
Total Aldehydes	≤100 ppb
4-Phenylcyclohexane	\leq 0.0065 mg/m ³ or \leq 6.5 μ g/ m ³

As such the Teo Visitor Chair is in compliance with the BIFMA x7.1-2005 criteria.

Note: all data, including but not limited to raw instrument files, calibration fits, and quality control checks used to generate the test results are available to the client upon request.

LIMITATIONS

This report is intended for the use of American Seating only. If other parties wish to rely on this report, please have them contact us so that a mutual understanding and agreement of the terms and conditions for our services can be established prior to their use of this information. Please note that this report shall not be reproduced, except in full, without the written approval of the laboratory.